

Global Heterogeneous Graph and Target Interest Denoising for Multi behavior Sequential Recommendation

Xuewei Li College of Intelligence and Computing, Tianjin University Tianjin, China lixuewei@tju.edu.cn

Mankun Zhao College of Intelligence and Computing, Tianjin University Tianjin, China zmk@tju.edu.cn

Hongwei Chen College of Intelligence and Computing, Tianjin University Tianjin, China chw@tju.edu.cn

Tianyi Xu College of Intelligence and Computing, Tianjin University Tianjin, China tianyi.xu@tju.edu.cn

Mei Yu^{*} College of Intelligence and Computing, Tianjin University Tianjin, China yumei@tju.edu.cn

code:none

WSDM 2024

Jian Yu College of Intelligence and Computing, Tianjin University Tianjin, China yujian@tju.edu.cn

Wenbin Zhang **Information and Network Center, Tianjin University** Tianjin, China zhangwenbin@tju.edu.cn

Reported by Minqin Li

Figure 1: Illustration of heterogeneous item transitions, including intra-type transition and cross-type transition.

1.Most existing methods either do not explicitly model heterogeneous item transitions or ignore information from global users, and thus cannot learn heterogeneous item transitions.

2.Extracting specific interests for the target behavior from the auxiliary behaviors and filtering out the noise information in the auxiliary behaviors is another critical challenge.

Method

Figure 2: The overall framework of our proposed GHTID.

(1)

$$
PMI(v_i, v_j, x \rightarrow y) = \log \frac{p(v_i, v_j, x \rightarrow y)}{p(v_i, x)p(v_j, y)}
$$

$$
p(v_i, v_j, x \rightarrow y) = \frac{|S(v_i, v_j, x \rightarrow y)|}{|S|}
$$

$$
p(v_i, x) = \frac{|S(v_i, x)|}{|S|}
$$

where S is the set of all item sequences, $S(v_i, x)$ is the set of item sequences containing item v_i with behavior type x , and $S(v_i, v_j, x \rightarrow y)$ is the set of item sequences containing both item v_i with behavior type x and item v_j with behavior type y. The co-occurrence coefficient of v_i and v_j under the relationship $x \to y$ is $w_{ij}^{x \to y}$ = PMI($v_i, v_j, x \to y$).

$$
m_{v_i,r}^{(l)} = \frac{1}{\left|\sum_{v_j \in \mathcal{N}_r^{Gg}(v_i)} w_{ij}^r\right|} \sum_{v_j \in \mathcal{N}_r^{Gg}(v_i)} w_{ij}^r p_{v_j}^{(l-1)}
$$
(2)

$$
\pi(v_i, r) = a^T LeakyReLU(\mathbf{W}_r \$ [p_{v_i}^{(l-1)} || m_{v_i, r}^{(l)})]
$$
\n
$$
\alpha_{v_i, r} = \frac{exp(\pi(v_i, r))}{\sum_{k \in \mathcal{R}_g} exp(\pi(v_i, k))}
$$
\n
$$
p_{v_i}^{(l)} = \sum_{k \in \mathcal{R}_g} \alpha_{v_i, k} m_{v_i, k}^{(l)}
$$
\n(3)

(5)

$$
q_{v_i}^{(l)} = q_{v_i}^{(l-1)} + \sum_{v_j \in \mathcal{N}_{v_i}^{G_s}} \text{attn}(v_i, v_j) q_{v_j}^{(l-1)}
$$
(4)

$$
\pi(v_i, v_j) = a_{r_{ij}}^T \text{LeakeyReLU}([\mathbf{W}_1 q_{v_i}^{l-1} || \mathbf{W}_2 q_{v_j}^{l-1}])
$$

$$
\text{attn}(v_i, v_j) = \frac{\exp(\pi(v_i, v_j))}{\sum\limits_{v_k \in \mathcal{N}_{v_i}^{\mathcal{G}_s}} \exp(\pi(v_i, v_k))}
$$

Method

$$
h_{v_i} = \text{Relu}(\mathbf{W}_3[\text{Dropout}(h_{v_i}^{\mathcal{G}_g})||h_{v_i}^{\mathcal{G}_s}])
$$
(6)

$$
q_{short} = h_{v_n}
$$

\n
$$
\alpha_i = a_{short}^T \sigma(\mathbf{W}_4 q_{short} + \mathbf{W}_5 h_{v_i} + b_1)
$$

\n
$$
h_s^{short} = \sum_{i=1}^n m_i \alpha_i h_{v_i}
$$

\n
$$
q_{long} = \frac{1}{n} \sum_{i=1}^n m_i h_{v_i}
$$

\n
$$
\beta_i = a_{long}^T \sigma(\mathbf{W}_6 q_{long} + \mathbf{W}_7 h_{v_i} + b_2)
$$

\n
$$
h_s^{long} = \sum_{i=1}^n \beta_i h_{v_i}
$$

\n(8)

$$
h_s = \text{LeakeyReLU}(\mathbf{W}_8[h_s^{short}||h_s^{long}])
$$

(9)

$$
Loss = -\frac{1}{|O|} \sum_{(s,i,b)\in O} log \frac{exp(y_{s,i}^b)}{\sum_{j=1}^N exp(y_{s,j}^b)}
$$
(10)

Experiments

Table 1: Statistics of the datasets after preprocessing.

Table 2: Overall model performance on four datasets, with the metrics of HR@N and NDCG@N (N=10).

Table 3: Ablation study of GHTID

Experiments

Figure 3: Relative performance drop on dataset UB and Tmall when the test data are corrupted by synthetic noises on auxiliary behavior. The x-axis is the percentage of corrupted data from auxiliary behavior. The y-axis is the ratio of the performance with noisy test data to the performance with clean training data.

ExperimentsTATTM ×

Figure 4: Effect of auxiliary behaviors.

